If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-140=0
a = 5; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·5·(-140)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*5}=\frac{0-20\sqrt{7}}{10} =-\frac{20\sqrt{7}}{10} =-2\sqrt{7} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*5}=\frac{0+20\sqrt{7}}{10} =\frac{20\sqrt{7}}{10} =2\sqrt{7} $
| 0=−16t2−13t+180 | | 0=−16t2−13t+180. | | x/3+14=26 | | 4.6(x+3)=9.17 | | 24.75x+23.00=17.25x+53.00 | | 7x+29=1+5x | | 6y+5=7y-5 | | 3(2+q)+15=1 | | g-2/5=g+4 | | -40=4(s+68) | | -6g+32=12 | | -4x=-x^2+2x | | 3x+29=1+5x | | 16=1/6(-12)+b | | k^2-13k+30=0 | | 2x+3=-3+13 | | |3x-2|=-4 | | 21-r=-87 | | -66=30-4t | | -6=4m | | -4=4+2c | | 5m+4(1m-2)+3=40 | | y=-×+5 | | 3.5x+2.25=345 | | 12x-5x+140=12x+100 | | v/5+26=-5.25 | | 4y-10=2y+4 | | 7h-28=2h+17 | | ⁻0.1x+310=410⁻0.1x+310=410 | | 6y^2-57y+135=0 | | 10×+y=5 | | 0.72z+1.9+0.1z=5.5-0.4z |